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Abstract 
We present a new model of children’s performance on the balance-scale task, one of the most 
common benchmarks for computational modeling of psychological development. The model is 
based on two processing modules, called the intuitive and torque-rule modules, both 
implemented as constructive neural networks. While the intuitive module recruits non-linear 
sigmoid units as it learns to solve the task, the second module can additionally recruit a neurally-
implemented torque rule, mimicking the explicit teaching of torque in secondary-school science 
classrooms. A third, selection module decides whether the intuitive module is likely to yield a 
correct response or whether the torque-rule module should be invoked on a given balance-scale 
problem. The model progresses through all four stages seen in children, ending with a genuine 
torque rule that can solve untrained problems that are only solvable by comparing torques. The 
model also simulates the torque-difference effect and the pattern of human response times, faster 
on simple problems than on conflict problems. The torque rule is more likely to be invoked on 
conflict problems than on simple problems and its emergence requires both explicit teaching and 
practice. Appendices report evidence that constructive neural networks can also acquire a 
genuine torque rule from examples alone and show that Latent Class Analysis discovers small, 
unreliable rule classes in both children and computational models.  

Keywords: Cognitive development; balance scale; constructive neural networks; knowledge-
based learning; KBCC; SDCC. 

1. Introduction	
Ongoing debates between symbolic and neural-network models of cognition have often focused 
on development of children’s performance on balance-scale problems, one of the most simulated 
tasks in developmental psychology. The symbolic view is that knowledge is represented in 
propositional rules referring to things in the world, that processing occurs as rules are selected 
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and fired, and that knowledge is acquired by learning such rules. In neural-network accounts, 
active knowledge is represented in rapidly changing neuronal-unit activations and long-term 
knowledge by excitatory and inhibitory synaptic connections between units, processing involves 
activation passing from one layer of units to another, and knowledge acquisition results from 
adjustment of connection weights and perhaps recruitment of new units into the network. The 
symbolic approach has been referred to as rule use, and the neural-network approach as rule 
following (Shultz & Takane, 2007).  

Although this may seem to be a subtle distinction, there are important differences between 
the two viewpoints that have consistently guided research over the last few decades. The rule-use 
approach assumes that people have and use rules to guide their reasoning and behavior, perhaps 
affording the perfect generalization that symbolic rules may allow. Rule-use is quite consistent 
with the idea that human cognition is often quite regular. In contrast, the rule-following approach 
assumes that such regularities may be naturally approximated by neural networks that adapt to 
regularities in the environment. This affords more graded generalizations whose regularity 
approximates the extent to which the environment is consistently regular, with the possible 
advantage that both regularities and exceptions can be accommodated within the same neural 
network. In rule-use systems, exceptions are instead typically memorized, and represented 
separately from the rules themselves. Such differences are highlighted in precise computational 
models of psychological theories (Shultz, 2003).  

One of the most frequently modeled domains in developmental psychology focuses on the 
balance-scale task, studied by Siegler (1976) and others. The balance-scale is interesting because 
it is representative of the many tasks requiring integration of information across two separate 
quantitative dimensions and because it provides well-replicated results with an interesting stage 
progression.  

Here we present a new computational model of balance-scale acquisition that addresses a 
recent criticism affecting many of the balance-scale computational models – ensuring that the 
final stage consists of a genuine, multiplicative torque rule and not a simpler rule based on 
addition (Quinlan, van der Maas, Jansen, Booij, & Rendell, 2007). After describing the balance-
scale task and phenomena, we present our new computational model.  

1.1	Balance‐scale	task	and	phenomena	
The task presents several pegs positioned on a rigid beam at regular distances to the left and right 
of a fulcrum (Siegler, 1976). An experimenter places some identical weights on a peg on the left 
side and some number of identical weights on a peg on the right side of the beam. The 
participant is asked to predict which side of the scale will drop, or whether the scale will remain 
balanced, when the beam is released from its supports, usually a block placed under each end of 
the beam. Archimedes’ principle of the lever describes a rule that yields a correct answer to all 
such problems: multiply the weight and distance from the fulcrum on each side and predict that 
the side with the larger product (or torque) to drop.  
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A neural-network simulation using the cascade-correlation (CC) algorithm (Shultz, 
Mareschal, & Schmidt, 1994) captured the four stages seen in children (Siegler, 1976): 1) 
predicting the side with more weights to descend, 2) when the weights are equal on both sides, 
also predicting the side with greater distance to descend, 3) predicting correctly when weight and 
distance cues both forecast the same result and performing at chance when these cues conflict, 
and 4) being correct on at least 80% of balance-scale problems.  

1.1.1	Diagnosing	stage	4	
If performance at Stage 4 is diagnosed as being correct on 80% of balance-scale problems, some 
of which are difficult problems in which weight and distance cues conflict with each other, then 
at least some computational models, both symbolic (Schmidt & Ling, 1996) and connectionist 
cascade-correlation networks (Shultz, Mareschal, et al., 1994) reach Stage 4. But if Stage 4 is 
defined by possession of a genuine multiplicative torque rule, as opposed to say an addition rule, 
the modeling challenge remains open. Because many conflict problems can be solved by just 
adding weight and distance, documentation of a torque rule must be supported by success on 
problems that cannot alternately be solved by an addition rule (Boom, Hoijtink, & Kunnen, 
2001; Quinlan, et al., 2007).  

With five pegs and five weights, the problem size often used in simulations of the balance 
scale (Shultz, Mareschal, et al., 1994), there are 625 total problems, of which only 200 are 
relatively difficult conflict problems in which weight and distance information, used alone, 
predict different outcomes. Only 52 of these conflict problems are torque problems that cannot 
be solved by mere addition; the other 148 are addition problems that can be solved by adding 
distance and weight on each side and comparing these sums.  

Addition was routinely ignored in computational models of balance-scale development, 
whether symbolic (Schmidt & Ling, 1996) or connectionist (McClelland, 1989; Schapiro & 
McClelland, 2009; Shultz, Mareschal, et al., 1994), just as it had been ignored in many older 
psychology experiments on the balance scale. But with evidence that at least some people use or 
follow a genuine torque rule, solving balance-scale problems that addition cannot solve (Boom, 
et al., 2001; Quinlan, et al., 2007), it becomes important to test computational models for their 
ability to acquire and use a genuine torque rule.  

This problem of accurately diagnosing a terminal stage does not arise in the many other 
developmental domains where constructive neural networks have been successfully applied: 
conservation (Shultz, 1998, 2006), seriation (Mareschal & Shultz, 1999), transitivity (Shultz & 
Vogel, 2004), integration of cues for moving objects (Buckingham & Shultz, 2000), shift 
learning (Sirois & Shultz, 1998), deictic pronouns (Oshima-Takane, Takane, & Shultz, 1999; 
Shultz, Buckingham, & Oshima-Takane, 1994), word stress (Shultz & Gerken, 2005), syllable 
boundaries (Shultz & Bale, 2006), morpho-phonology (Shultz, Berthiaume, & Dandurand, 
2010), habituation of infant attention to auditory (Shultz & Bale, 2001, 2006) and visual (Shultz, 
2011; Shultz & Cohen, 2004) information, false-belief (Berthiaume, Onishi, & Shultz, 2008; V. 
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C. Evans, Berthiaume, & Shultz, 2010), and concept acquisition (Baetu & Shultz, 2010; Shultz, 
Thivierge, & Laurin, 2008).  

Our experience teaching university students about psychological development on the balance 
scale suggests that those few students who spontaneously use the torque rule to solve balance 
problems admit that they learned this method in science classes, either in secondary school or 
college. When the remaining students are informed that balance-scale problems can be solved by 
computing and comparing torques, they too begin to sometimes use this torque rule to produce 
more correct answers. Thus, it seems likely that most people learn a torque rule from explicit 
verbal instruction that includes relevant examples (Siegler, personal communication). In contrast, 
people are unlikely to learn a torque rule from examples alone because problems requiring the 
torque rule are so rare.  

1.1.2	The	new	model	
Here, we attempt to achieve a successful and psychologically more valid model of balance-scale 
development by capturing all four stages, including a genuine torque rule at stage 4. The new 
model combines and extends our initial balance-scale simulation (Shultz et al., 1994) and recent 
exploratory work with knowledge-based learning (Shultz et al., 2007).  

We posit two different processing modules to solve the task, an intuitive module and a 
torque-rule module. The intuitive module is a connectionist network that implicitly learns 
environmental regularities about balance-scale problems. It predicts which side of a balance 
scale will tip down, without any need to invoke a rule. The learning process is essentially 
bottom-up and stimulus driven. In contrast, the torque-rule module simulates explicit learning via 
teaching a torque rule in secondary-school science classes. This rule has to be understood 
through language, and coded for in an appropriate manner in memory. In our model, we 
implement this as a neural module with torque-rule functionality. A meta-cognitive, selection 
module selects whether to use the prediction of the intuitive model or, if it determines that 
prediction is likely to be incorrect, invokes the torque module to receive a more definitive 
answer. All three modules are implemented as neural networks. 

This sort of dual-processing approach (e.g., automatic vs. deliberate) is rooted in a long and 
currently active emphasis in cognitive psychology (J. B. T. Evans, 2010; Kahneman, 2011; 
Stanovich, 2012). Our results are discussed in that context.  

2. Methods 

2.1 Model architecture 
Our model contains three key modules: intuitive, torque-rule, and selection. The intuitive and the 
torque-rule modules can compute separate predictions about the state of the scale balance after 
the beam is released from its supports. By learning to predict the correctness of the intuitive 
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module on various balance-scale problems, the selection module decides whether to use the 
prediction of the intuitive module or invoke the torque module instead.  

All three modules are implemented using cascade correlation variants. More specifically, the 
intuitive and selection modules uses sibling-descendant cascade correlation (SDCC) (Baluja & 
Fahlman, 1994), whereas the torque module employs knowledge-based cascade correlation 
(KBCC) (Shultz & Rivest, 2001). We first describe these variants, and then their use. 

2.2 Cascade correlation  
Cascade correlation (CC) is a neural network algorithm characterized by network expansion as 
needed to solve some problem. This automated growth approach solves the ill-defined problem 
of selecting an appropriate topology of hidden units (number of units and their arrangement in 
layers) as used in feed-forward neural networks. 

CC learns by alternating between two phases: input phase and output phase (Fahlman & 
Lebiere, 1990). CC always begins in output phase with the simplest possible network, that is, one 
without any hidden units. In output phase, CC learns by adjusting connection weights entering 
output units using a standard gradient descent on output error. If the current topology does not 
allow a sufficient error reduction, CC shifts to an input phase at the end of which a new hidden 
unit is recruited from a pool of candidate units. In input phases, connection weights between 
inputs and these candidate hidden units are trained so as to maximize the covariance between 
unit activation and the residual network error. At the end of an input phase, the candidate unit 
with the highest absolute covariance is selected and installed into the network with random input 
connection weights of the same sign as just learned, the other candidates are discarded, and there 
is a shift back to output phase. The algorithm shifts from one phase to the other when the current 
phase fails to improve the solution of the problem on which the network is being trained, by not 
reducing error or failing to improve covariances, for output- or input-phase, respectively. 
Alternation between phases typically continues until network error is sufficiently low, or a 
maximal network size is reached, the size of the network increasing by one hidden unit at the end 
of each input phase. 

Two important parameters characterize variants of this algorithm: (1) where to install newly 
recruited hidden units in the existing network, and (2) what kind of computation these hidden 
units perform. Regarding installation location for hidden units, solutions vary from flat 
topologies in which all units are installed on a single hidden layer (Sjogaard, 1992) to deep 
topologies in which all recruited units are cascaded on new, progressively deeper layers 
(Fahlman & Lebiere, 1990). The following two sub-sections detail how algorithm variants deal 
with these two parameters.  

2.2.1	Sibling‐descendant	cascade‐correlation		
In our present model, we use a compromise approach called the sibling-descendant cascade-
correlation (SDCC) (Baluja & Fahlman, 1994) which flexibly installs a new recruit on the 
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current deepest layer, or on a new, deeper hidden layer. Apart from network depth and number of 
connection weights (Shultz, 2006), the choice of installation strategy has little impact on 
functionality. A systematic study of the effect of cascading weights and network depth showed 
that flat and deep variants of generalize equally well (Dandurand, Berthiaume, & Shultz, 2007). 
Mathematical details about CC and SDCC are available elsewhere (Shultz & Fahlman, 2010).  

2.2.2	Knowledge‐based	cascade	correlation	
Regarding the kind of computations that hidden units perform, ordinary hidden units have 
sigmoidal activation functions (Fahlman & Lebiere, 1990) to compute output values given the 
weighted sum of input values to the unit. Knowledge-based cascade correlation (KBCC) 
generalized the concept of recruits to any differentiable function, including previously-learned 
CC or SDCC networks (Shultz & Rivest, 2001) or human-designed networks or units that have 
some symbolic-like functionality (Shultz, Rivest, Egri, Thivierge, & Dandurand, 2007). The 
computational device that gets recruited is the one whose output covaries best with residual 
network error. A simple example of a KBCC network is shown in Figure 1, illustrating that a 
recruited source network or function can have multiple inputs and outputs, thus requiring 
connection-weight matrices rather than vectors. Mathematical details about KBCC are available 
elsewhere (Shultz & Rivest, 2001; Shultz, et al., 2007). 

 

 

 

Figure 1. Drawing of a sample KBCC network that has recruited a single sigmoid hidden unit 
followed by a source function. Thick solid lines represent connection-weight matrices, thin solid 
lines represent connection-weight vectors, and the dashed line represents a single connection 
weight. 
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2.3 Intuitive module 
As in our initial CC simulation of the balance scale task (Shultz et al., 1994), the intuitive 
module learns to predict balance-scale results from learning with examples only, and is 
implemented here as an SDCC network. The recruitment pool contains eight sibling and eight 
descendant units that all have sigmoidal activation functions whose outputs range from -0.5 to 
0.5. The intuitive module receives four inputs representing distance and weight on the right and 
distance and weight on the left. There are two outputs, whose target patterns are coded as 
follows: +0.5 +0.5 for balance, +0.5 -0.5 for left heavier, and -0.5 +0.5 for right heavier. This 
improved choice of coding values for the balance scale uses target values in the stable, saturated 
regions of the activation function, yielding somewhat faster learning. In the original CC 
simulation (Shultz, Mareschal, et al., 1994), the target values for a balanced outcome were 0 0, 
which reside in the steep, transitional range of the activation function.  

Training begins with 100 initial patterns, randomly selected from the 625 possible balance-
scale problems allowed by five weights and five distances from the fulcrum. In the selection 
process, there is a .9 bias toward equal-distance problems (in which the weights are placed 
equally distant from the fulcrum). This is to encourage early use of the weight rule (the side with 
more weights should descend) under the assumption that children have rather few experiences 
with physical devices that systematically vary distance from a fulcrum (McClelland, 1989). One 
new pattern is added in each output epoch, under this same .9 bias. In an epoch, each of the 
training patterns is encountered once. Because items are selected with replacement, random 
selection of duplicate patterns is permitted.  

Exploratory simulations indicate that these networks are well into stage 3 by about 350 
epochs (see confirming evidence in Results section). Thus, when a network reaches 350 epochs, 
we allow it to complete the current output phase, and then stop training. Thus, training stops after 
a fixed period regardless of the level of error that was reached. All other parameters are the 
default values. 

2.4 Torque module  

After the intuitive module is trained, our simulation proceeds to training the torque-rule module. 
This involves a fresh KBCC network and training data that includes the intuitive training set plus 
perhaps an infusion of torque problems (see practice factor below). We manipulate two 
variables, in a two-way independent-factors design. First, a teaching factor represents whether or 
not the torque rule is injected into the KBCC candidate pool (see details below). Second, a 
practice factor represents whether or not the intuitive training set is expanded with a randomly 
selected 26 of the 52 possible torque problems. The other 26 torque problems are reserved for 
testing generalization. This design allow us to systematically study the effect of teaching the 
torque rule and giving additional practice with torque problems, mimicking what transpires when 
torque is covered in secondary-school science classes.  
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The torque module uses KBCC. In the recruitment pool, eight sibling sigmoid and eight 
descendant sigmoid units are provided, and in addition eight sibling torque rules and eight 
descendant torque rules for the conditions in which teaching is occurring. The target torque-rule 
network has the same inputs and outputs as the intuitive network.  

To allow networks sufficient opportunity to fully exploit the error reduction possible with a 
complex unit like the torque rule, we allowed input and output phases to be longer by setting the 
patience parameter to 100 epochs, and the change threshold to 0.001. Training begins in input 
phase rather than the usual output phase, and ends when a standard score threshold criterion of .4 
on network error is met. Other simulation parameter settings are the same as for the intuitive 
network.  

2.4.1	Torque‐rule	injection	
To simulate the teaching of a torque rule, we introduce into the recruitment pool a unit (hereafter 
referred to as the torque rule) which executes the following function on its four inputs: 

 5.0
1

1
4




  TDe
TR    Equation 1 

where      llrr dwdwTD    Equation 2 

Here, TR is the torque rule, and TD is torque-difference, computed as the difference between the 
torque on the right side of the fulcrum and the torque on the left side of the fulcrum. On each 
side of the fulcrum, torque is computed as the product of weight (w) and distance (d). TD is then 
passed through a sigmoid squashing function to obtain TR, as shown in Figure 2 for points 
corresponding to discrete values of weight and distance. TR is also a differentiable function, 
which KBCC requires of potential recruits. The exponent of 4 increases the steepness of TR, 
emphasizing the binary judgments that humans are asked to make on this task, but the reported 
results were also produced with the default exponent value of 1. 
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Figure 2. Torque-rule output as a function of torque difference.  

 

2.5 Selection module  
The selection module learns to predict the accuracy of the intuitive network and then decides, for 
each balance-scale problem, whether to use the intuitive response or invoke the torque-rule 
module. The selection module can thus be interpreted as a meta-cognitive system that monitors 
correctness of the intuitive module and decides whether to activate the torque-rule. 

Implemented as an SDCC network, the selection module receives seven inputs. In addition to 
the usual four inputs describing a balance-scale problem, these include a torque-difference 
measure (the absolute value of Equation 2) and two binary inputs indicating symmetry of 
weights and symmetry of distances (1 if symmetrical, 0 otherwise). These additional inputs, 
which presumably can be easily extracted perceptually in humans, provide useful information in 
this rapid, heuristic estimation task. The training set consists of the balance problems that were 
presented to the intuitive network. The output target is the correctness value of the intuitive 
network on these problems (correct = 1, error = 0). The output range of sigmoids is selected to be 
between 0 and 1. Parameter settings are all default values.  
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After the selection module is trained, the system’s prediction is generated according to a 
simple rule: if the intuitive module is expected to give a correct answer, then output the value it 
predicts, otherwise output the prediction of the torque module.  

2.6 Test Sets 
The system is tested with three different sets of problems, labelled Siegler-TD, Addition, and 
Torque. We decided not to additionally test performance with Latent Class Analysis (LCA) 
because of its demonstrated tendency to create small unreliable rule classes and inability to 
decide on the right number of classes, and because results were quite clear with the tests we did 
perform. Appendix C demonstrates these first two LCA limitations.  

2.6.1	Siegler‐TD	
The so-called Siegler-TD test set contains 24 balance-scale patterns selected as in our original 
simulation (Shultz, Mareschal, et al., 1994), inspired by Siegler’s (1976) test set but additionally 
balanced for torque-difference effects. It contains four randomly-selected problems of each of 
Siegler’s six types: balance, weight, distance, conflict-balance, conflict-weight, and conflict-
distance problems. Except for balance and conflict-balance problem types that always have a 
torque difference of 0, other types of problems are represented at four different levels of torque 
difference: 1, 3-5, 6-9, or 10-19. This is an improvement over studies that ignore torque 
differences and thus risk confounding problem type with torque difference and studies that use 
only small torque differences and thus risk underestimating torque-difference effects.  

This test set is used to diagnose stages 0-4 according to Siegler’s (1976) criteria, with the 
proviso that Stage 2 is given diagnostic priority over Stage 3 (Shultz, Mareschal, et al., 1994). 
Rule diagnosis is conducted by software: diagnosis of Stage 4 requires 20 of 24 problems 
correct; diagnosis of stage 2 requires at least 13 correct on the 16 balance, weight, distance, and 
conflict-weight problems and less than 3 correct on the 8 conflict-distance and conflict-balance 
problems; stage 3 requires at least 10 correct on the 12 balance, weight, and distance problems 
and fewer than 10 correct on the 12 conflict problems; stage 1 requires at least 10 correct on the 
12 balance, weight, and conflict-weight problems and fewer than 3 correct on the 12 distance, 
conflict-distance, and conflict-balance problems. Stage 2 is given scoring priority over Stage 3 
because the criteria for Stage 2 are more specific, particularly on how to score conflict-weight 
problems.  

2.6.2	Addition		
The addition test set helps to distinguish a genuine torque rule from a mere addition rule. It 
contains all 148 addition problems (among all conflict problems), a few of which may be 
included in the training set when expanding by one pattern per epoch. Typically, no more than 
one or two such patterns get included in the train set.  

2.6.3	Torque		
The torque test set contains the 26 torque problems not randomly selected to expand the training 
set in torque-rule training. Recall that among all conflict problems, there are 52 torque problems, 
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half of which are used in training. There is a small probability that these problems are selected 
when expanding the train set by one pattern per epoch, but in practice no more than a single 
pattern is included in this way. If a network performs well on torque problems, then it is 
diagnosed as following a genuine torque rule as opposed to solving balance-scale problems with 
the often successful addition rule.  

2.7	Test	for	growth	spurts	
We tested for growth spurts in the acquisition curves with Automatic Maxima Detection (AMD). 
Such spurts often signal the transition between successive stages, which can be indicated by 
plateaus. AMD uses functional data analysis to distinguish statistically significant spurts from 
continuous development and mere noise (Dandurand & Shultz, 2010).  

3. Results 
We ran 20 models, with each model containing randomly-selected, distinct training sets and 
instances of the three modules just described. 

3.1 Intuitive module 
Figure 3 presents mean stage classification on the Siegler-TD test set for 20 intuitive networks 
over epochs. Performance at stage 1 is evident around epoch 30-40, stage 2 at epochs 100-150, 
and stage 3 at epochs 200-350. Epoch 50 marks the transition between stages 1 and 2, and epoch 
150 marks the transition from stage 2 to 3. Thus, these networks capture the first three balance-
scale stages seen in children from about five years of age up through early adolescence. 

 

Figure 3. Stage progression of models on the Siegler scale as a function of training, with standard 
errors.  
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We then used AMD to determine if stage transitions were characterized by significant spurts 
in stage progression. Results, shown in Figure 4, show that the transition between stages 2 and 3 
is characterized by a significant, p < .05, performance spurt with maximal velocity at epoch 177. 
AMD identifies spurt locations by local maximal velocity (first derivative), decreasing 
acceleration (second derivative), and negative jerk (third derivative) (Dandurand & Shultz, 
2010). The lambda parameter in AMD controls the amount of smoothing that is applied. We 
used a lambda of 1x108. 

The present result is consistent with visual inspection of Figure 3 where the clearest plateaus 
occur at stages 2 and 3, with a marked increase in performance between these plateaus. In 
contrast, progression from stages 0 to 2, although bumpy, proceeds in a more gradual and steady 
fashion. Using different methodology, a back-propagation neural network model was also shown 
to progress from stage 1 to 2 of the balance scale in a continuous fashion (Schapiro & 
McClelland, 2009). That model has not been shown to reach stage 4 by any measure.  

 

Figure 4. AMD analysis of the stage progression with lambda = 1x108 and p = .05 

Figure 5 shows accuracy, in terms of mean proportion correct, in 20 intuitive networks on 
each of the three test sets over epochs. This confirms that intuitive networks learned to perform 
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well on the Siegler-TD and addition test sets, but not on the torque test set. Model accuracy is 
consistently higher on the addition test set than on the torque set. In addition, around epochs 150-
200, we observe a rapid increase in accuracy on addition problems combined with a decrease of 
accuracy on torque problems. This strongly supports the hypothesis that networks develop an 
addition strategy, and that addition characterizes stage 3 performance as argued by a number of 
researchers in developmental psychology (Boom, et al., 2001; Ferretti, Butterfield, Cahn, & 
Kerkman, 1985; Jansen & van der Maas, 1997, 2002; Normandeau, Larivee, Roulin, & Longeot, 
1989; Quinlan, et al., 2007).  

 

Figure 5. Average accuracy on Siegler, addition and torque problems as a function of model 
training, with standard errors. 

 

We next investigated accuracy as a function of torque difference. Figure 6 shows that the 
current model successfully replicated the torque-difference effect previously found (Shultz, 
Mareschal, et al., 1994) over the 4 torque levels (level 4=high, 1=low). This effect, also observed 
in children (Ferretti & Butterfield, 1986; Ferretti, et al., 1985), describes the fact that accuracy 
tends to be better for problems when the torque difference between the two sides of the scale is 
large.  
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Figure 6. The torque-difference effect in the intuitive network of the balance scale task, with 
standard errors. 

 

3.2 Torque module 
Figure 7 shows accuracy of the torque module on balance-scale problems as a function of 
training. The four conditions correspond to the 2x2 independent-factors design: (1) teaching 
indicates whether the torque rule is available as prior knowledge for recruitment (2 levels = 
present or absent) and (2) practice indicates whether the training set was expanded with half of 
torque problems to give additional, torque-problem-specific practice (2 levels: expanded or not). 
Both teaching and practice are necessary for achieving high performance (about 0.9 accuracy) on 
torque problems. We also see that the combination of teaching and practice results in a higher 
accuracy on all three data sets.  
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Figure 7. Accuracy of the torque module on three types of test problems, as a function of 
teaching the torque rule and of additional torque practice problems. 

In conditions that included injection of the torque rule, networks recruited between 1.9 and 
2.1 torque rules, but no sigmoid unit. In contrast, for conditions in which the torque rule was not 
available, between 3 and 7 sigmoid units were recruited.  

3.3 Selection module and the complete model 
The selection networks trained for a mean of 443 epochs (SE = 33) and recruited 1.3 (SE = 0.1) 
hidden units on average. 

Figure 8 presents mean global accuracies of the model on the three test sets, comparing the 
intuitive module alone with the combination of intuitive and torque answers as selected by the 
selection module and with an idealized symbolic torque rule. Although intuitive networks 
perform well on the Siegler-TD and addition test sets, they do badly on torque problems. In 
contrast, the combination strategy yields good performance on all three test sets, qualifying as 
stage 4 performance as described by Siegler (1976), requiring success rate of at least .8. This 
result is robust whether we consider the connectionist or the symbolic torque rule module 
implementation. 
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Figure 8. Comparison of accuracies of the intuitive module only and the combination model 
(either with a connectionist or a symbolic implementation of the torque module) on Siegler, 
addition and torque problems, with standard errors.  

The mean proportions of problems solved by the intuitive network under combination 
conditions were .75 (SE = 0.01), .64 (SE = 0.01), and .25 (SE = 0.03) on the Siegler-TD, 
addition, and torque test sets, respectively. That is, torque problems are less likely than other 
problems to be solved intuitively. We then further investigated which problems get solved by the 
intuitive network and by the torque network. As we can see in Figure 9, simple problems 
(balance, distance and weight) tend to be solved more often using the intuitive network module, 
while conflict problems tend to be solved using the torque network module.  
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Figure 9.  Proportion of problems solved using the intuitive network in the combination model. 
Results are presented by problem type for the Siegler test set. 

We can next make some predictions on response times of children as they solve the six kinds 
of problems in the Siegler test set. Figure 10 presents possible timings of execution of the three 
modules (selection, intuitive and torque rule) for different combinations of parallel and serial 
processing, under three related assumptions. First, the selection module always executes first to 
decide which answer (intuitive or torque rule) to use. Second, the default or preferred mode of 
processing of the system is intuitive. Third, processing with the torque module will only be 
executed when the selection module predicts that the answer of the intuitive system is likely to 
be incorrect.  

As we can see in Figure 10, the model predicts slower response times on problems solved 
with the torque rule module than problems solved with the intuitive module, as long as the time 
needed to generate an answer using the torque rule module (i.e., t1) is longer than the time 
needed to generate an answer with the intuitive module (i.e., t2). If ttr > ti, this constraint is 
satisfied.  

For the Siegler test set, the model predicts slower response times for conflict problems than 
for simple problems because answers to conflict problems rely much more on the torque module 
than answers to simple (non-conflict) problems. Quantitative details of such predictions depend 
on the relative ratio of time spent in the two modules, on the relative speed of processing of the 
modules, and on the characteristics of the processing (parallel vs. serial). However, as long as the 
torque rule module (ttr) is slower than the intuitive module (ti), the model robustly predicts 
slower responses on problems solved with the torque rule. In the example shown in Figure 11, 
based on the proportions of problems solved intuitively presented in Figure 9, processing times 
of the torque module is twice as long as that of the intuitive module (ttr = 2ti). This predicted 
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pattern of response times is compatible with the response times observed in young adults, plotted 
in Figure 12 (van der Maas & Jansen, 2003).  
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Figure 10. Three possible modes of execution of the processing modules, with ts, ti and ttr 
corresponding to the processing time of the selection, the intuitive and the torque-rule modules, 
respectively. Note that the model presented on the middle row covers two cases of execution of 
the intuitive and the torque rule modules: (1) they are executed in parallel, and thus both answers 
are generated though only one is used, and (2) only the module corresponding to the answer to be 
used is executed. For the model on the lowest row, the intuitive module always executes, even 
when its answer is not used. In all three cases, t1 is the response time for items solved using the 
torque rule module, and t2 the response time for items solved using the intuitive module. 
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Figure 11. Illustration of predicted response times as a function of balance-scale problem type, 
with standard errors.  

 

Figure 12. Human response times on balance scale problems classified according to Siegler’s 
scheme. Data for this graph are from Table 3 in van der Maas and Jansen (2003). The value for 
the conflict balance was computed as the average of times in conflict balance of types A and B.  

4. Discussion	

4.1	Summary	and	interpretation	of	findings	
Our new model of development of balance-scale knowledge progresses through all four balance-
scale stages, including a third stage in which weight and distance information are added and a 
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fourth stage in which these two sources of information are multiplied as in a genuine torque rule. 
Coverage of a genuine torque rule contradicts previous doubts about the inability of constructive 
neural networks to achieve that level of performance (Quinlan, et al., 2007). A torque rule can be 
considered genuine if it generalizes well to problems that cannot be solved by a simpler rule that 
merely adds, rather than multiplies, weight and distance information. Our networks generalize 
correctly to such untrained torque problems with about 90% success. This is not perfectly correct 
performance, but then neither is that of human participants on these tasks.  

This model incorporates three constructive neural networks. It captures the first three 
balance-scale stages with an intuitive network that learns only from examples. Then a 
knowledge-based network with an injected torque rule in the source-knowledge pool and 
additional torque training examples builds on this early intuitive training by recruiting this taught 
torque rule and learning how to use it. This model is the only neural-network system to so far 
demonstrate progression through all four balance-scale stages finishing with a genuine torque 
rule. Using automatic maxima detection (AMD), we found that the transition from stage 2 to 3 in 
the intuitive networks was the only significant spurt; earlier transitions were continuous. A 
symbolic rule-based model also ends with a genuine torque rule (van Rijn, van Someren, & van 
der Maas, 2003), but the ordering of stages 1 and 2 and the late appearance of addition and 
torque rules in that model were engineered by parameter settings; they were not an emergent 
result of learning or development.  

Operation of our intuitive network covers the torque-difference effect by showing better 
accuracy on problems with high absolute torque difference from one side of the scale to the 
other. This simulates psychological evidence (Ferretti & Butterfield, 1986; Ferretti, et al., 1985) 
and replicates our initial simulation (Shultz, Mareschal, et al., 1994). The symbolic rule-based 
model showed a torque-difference effect only with respect to differences in distance but not 
weight and only in the vicinity of stage transitions (van Rijn, et al., 2003), not throughout 
development as children apparently do.  

Just as with secondary-school science students, a lesson on torque does not guarantee a 
torque solution. The taught torque rule must be stored, recruited, and practiced; and even then it 
is not required to solve simple balance-scale problems that can be solved intuitively. In our 
model, a selection network learns to predict whether the intuitive network is likely to be correct 
on any given balance-scale problem. If the prediction is negative, the torque-rule network is 
invoked for a more accurate answer.  

 Results presented in Appendix A confirm our earlier conjecture (Shultz & Takane, 2007) 
that even SDCC networks learning solely from examples can acquire a genuine torque rule, if 
enough of those examples can only be solved by comparing torques. The training patterns there 
contained equal numbers of addition and torque problems. ANOVA results show that these 
networks learn an addition rule early and a torque rule later on, a natural progression for 
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networks that sum their inputs and recruit nonlinear hidden units as required. LCA results in 
Appendix B confirm this rule progression.  

This again contradicts claims that constructive neural networks cannot cover a genuine 
torque rule (Quinlan, et al., 2007). However, because those SDCC networks do not progress 
through the first two stages of balance-scale performance seen in children (using weight and 
weight plus distance), they are not our favored comprehensive balance-scale model. Progression 
through these first two stages requires a training set with a strong bias in favor of equal-distance 
problems in which there are the same numbers of weights placed equally distant from the 
fulcrum. This bias, coupled with the inherent rarity of torque problems fails to provide sufficient 
experience to build a torque rule.  

This explains why ordinary folks, unlike SDCC networks or Archimedes, do not discover a 
torque rule on their own. See Shepard (2008) for a clever thought experiment on how 
Archimedes might have discovered the nature of torque from reasoning alone (c. 280 BC). Most 
of us would need to be taught how torque works and then get some practice applying it (Siegler, 
personal communication). Our favored model of the balance scale works in that same fashion. 
Our experiments confirm that a combination of teaching (implemented by an injected torque 
rule) and practice is required for torque-like performance, after progressing through earlier stages 
of weight, weight plus distance, and addition.  

Our model correctly predicts that the torque-rule module is more likely to be invoked on the 
relatively difficult conflict problems than on simple problems that present no conflict between 
weight and distance information. On the simple assumption that an intuitive solution is generated 
faster than a torque-rule solution, the model also covers psychological evidence that response 
time is slower on conflict than simple problems (van der Maas & Jansen, 2003). The more 
effortful, deliberative process is not invoked until it is needed, i.e., when the intuitive solution is 
expected to be incorrect.  

On this same basis, our model also predicts, so far uniquely, that response times would 
increase on problems with small absolute torque differences between the sides of the scale. This 
again is because the torque-rule module tends to be used more often when torque differences are 
small. In fact, for all the non-balanced problems in the Siegler test set (weight, distance, conflict-
weight, and conflict-distance problems), we find a point-biserial correlation between absolute 
torque difference and reliance on the intuitive network, r(318) = .47, p < .001. This correlation is 
even larger when only non-balanced conflict problems (conflict-weight and conflict-distance 
problems) are included, r(158) = .73, p < .001. On the well-supported assumption that intuitive 
solutions are faster than deliberative solutions, these correlations represent a relation between 
reaction time and torque difference – faster response to problems with a larger absolute torque 
difference. In humans, this prediction could be tested by computing the same correlations. If the 
prediction is confirmed in humans, it could be interpreted as relatively quick solutions to 
problems with small torque differences, on which it is easy to gain an intuitive impression of 
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what will happen when the beam’s supports are removed, and longer response times to problems 
with such small torque differences that the torque rule must be invoked. 

The inherent ability of KBCC to incorporate differentiable functions into its source 
knowledge pool is a novel and promising way to integrate neural-network and symbolic 
approaches to cognitive modeling. Our use of a confidence network indicates that neural 
networks also may be able to simulate aspects of meta-cognition or reflection. Although we 
implemented a torque rule in thoroughly neural fashion, there is no current evidence for how 
torque processing is done in people. We showed that our overall model can accommodate other 
implementations of a torque module that provide good performance on torque problems, as 
evidenced by the robustness of the pattern of results obtained using an optimal symbolic rule-
processing implementation. It may be overkill to implement a whole rule-based system for a 
single rule. Also, it seems reasonable to suppose that brains must ultimately perform 
computations by learning how to pass activation signals among neurons.  

Nonetheless we remain open to other possible implementations of rule-like processing. For 
instance, efficient computation of products can be accomplished with so-called sigma-pi units 
that multiply, rather than add, their inputs (Durbin & Rumelhart, 1989). Do this twice and 
compare the size of the products, and you have a torque rule. Also, a model called long short-
term memory (LSTM) provides neurally-plausible modules of memory buffers and gates to 
retain representations over time (Hochreiter & Schmidhuber, 1997). Such features appear useful 
for a neural implementation of symbolic processing. For now, it is worth noting that our overall 
results and conclusions would remain consistent as long as implementation of the torque rule 
performs correctly on torque problems.  

Our present model builds on, improves, and extends work presented earlier (Dandurand & 
Shultz, 2009). From that previous model, here we improve the coding of balance outcomes by 
not placing target outputs at the inflection points of sigmoid activation functions; use a selection 
network rather than a less-efficient confidence network to guide processing; extend the model to 
cover the torque-difference effect and reaction times; apply automatic maxima detection to detect 
growth spurts; isolate the effects of learning and practicing the torque rule; add appendices to 
report on learning from examples alone (A), diagnosing stages with LCA and RAM techniques 
(B), and demonstrating reliability and decidability problems with LCA (C); and, in the next 
section, relate our model to previous work on dual and tripartite processing.  

4.1.1 Relation to previous work 
As noted, our modular approach to balance-scale phenomena is consistent with a long and still 
active emphasis in psychology. This work has been variously described in many different 
contrasts, such as heuristic vs. analytic (J. B. T. Evans, 2003, 2006, 2010), implicit vs. explicit 
(Reber, 1989; Reber & Lewis, 1977), automatic vs. controlled (Shiffrin & Schneider, 1977) or 
conscious (Posner & Snyder, 1975), adaptive vs. conscious (Wilson, 2002), intuitive vs. reasoned 
(Kahneman & Frederick, 2005), associative vs. rule-based (Sloman, 1996), and fast vs. slow 
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(Kahneman, 2011). Perhaps because of this proliferation of semantically rich terminology, some 
have opted for more neutral, numerical terms such as types 1 and 2 (J. B. T. Evans & Wason, 
1976; Stanovich, 2012; Thompson, Prowse Turner, & Pennycook, 2011; Wason & Evans, 1975) 
or systems 1 and 2 (Kahneman, 2011).  

A few researchers are proposing addition of a third, metacognitive module that decides 
whether to accept the response submitted by the faster, intuitive module or to inhibit that 
response and activate the more deliberate reasoning module for a more deeply considered 
response (Stanovich, 2012; Thompson, et al., 2011). Some of this work on dual (Sun, Slusarz, & 
Terry, 2005) or tripartite (Hahn & Nakisa, 2000) systems has involved operative computational 
models, while other researchers have begun to explore, in some cases with the aid of 
computational models, the brain characteristics that might have led to these differences in 
processing (Frank, Cohen, & Sanfey, 2009).  

Our current model seems closest to that of Hahn and Nakisa (2000) on plural inflection of 
German nouns. Their model coupled a neural network with a single default rule to construct 15 
different ways to form the plural form of 4000 German nouns. If the strength of the memory for 
an exception noun rose above a certainty threshold, default rule application was blocked. But if 
memory strength remained below this threshold, the default rule of adding an –s to the singular 
form was applied. This is similar to our model in having three modules implementing a rule, a 
network, and a selector, but the results were quite different. In their system, performance was 
always more correct when the default rule was not applied, regardless of threshold level, thus 
contradicting a dual-process hypothesis. In contrast, our model used the torque rule to improve 
performance on the more difficult problems where intuitive decisions were not so obvious. Such 
variations in results may naturally correspond to task differences. For the German plural, the rule 
turns out to be superfluous because the network can handle this default case as well as the 14 
exceptional forms. Whereas, for the balance scale, some problems have such similar torques that 
a superficial, intuitive solution is too error-prone to be trusted.  

Another difference is that deciding whether to use the default plural rule was done 
exclusively in symbolic software, whereas our selection module contained a neural network to 
learn to monitor performance of the intuitive module. It is not widely appreciated that neural 
networks can serve a meta-cognitive role by predicting the performance of another neural 
network rather than events in the environment.  

5. Conclusion		
In conclusion, we present a comprehensive model of the balance-scale task that successfully 
simulates the stage progressions, including the recently disputed torque-rule performance in the 
terminal stage, as well as the torque-difference effect and the pattern of response times observed 
in children. The model posits two distinct processing modules, an intuitive module and a torque-
rule module, consistent with the well-supported dual-processing approach in cognitive 
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psychology. A third, meta-cognitive module determines which of these two modules will 
produce the answer to any particular balance-scale problem. In the model, stage progression 
occurs as a natural consequence of learning (due to connection-weight adjustment) and 
development (due to recruitment of hidden units) in a fully connectionist fashion. Although the 
model uses a connectionist implementation of an explicitly-taught torque rule, it can 
accommodate any implementation that provides equivalent torque-comparison functionality, 
including symbolic versions. As with meta-cognition, it is not widely appreciated that neural 
networks can implement symbolic functions.  
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Appendix	A:	Simulating	Rule	4	in	Balance‐Scale	Development	

A.1	Introduction	
A recent critique argued that connectionist models of balance-scale development do not capture 
stage-4 performance (Quinlan, van der Maas, Jansen, Booij, & Rendell, 2007), which on some 
theoretical accounts (Siegler, 1976) involves computation and comparison of torques. Torque is 
the rotational force applied to a lever, multiplied by its distance from the lever's fulcrum. 
Because many conflict problems can be solved by adding (rather than multiplying) weight and 
distance, documentation of a torque rule needs to be supported by success on problems that 
cannot also be solved by addition.  

With five pegs and five weights, the problem size used in our original cascade-correlation 
(CC) simulations of the balance scale (Shultz, Mareschal, & Schmidt, 1994) and in many 
balance-scale psychology experiments, there are 625 total problems, of which just 200 are 
conflict problems. Only 52 of these conflict problems (dubbed torque problems) actually require 
a torque rule for correct solution because the other 148 conflict problems (dubbed addition 
problems) can be solved correctly by adding distance and weight on each side and comparing 
these sums.  

Until recently, there was not much interest in using an addition rule to gage balance-scale 
performance and addition did not figure importantly in descriptions of balance-scale stages. 
Thus, addition was routinely ignored in both symbolic (Langley, 1987; Newell, 1990; Schmidt & 
Ling, 1996) and connectionist (McClelland, 1989; Schapiro & McClelland, 2009; Shultz, et al., 
1994) simulations of balance-scale performance, and there was no attempt to distinguish addition 
from a genuine torque rule in these simulations.  

Thus it is not surprising that researchers using sophisticated methods such as Latent Class 
Analysis (LCA) failed to find evidence of a torque rule, distinct from an addition rule, in 
replications of connectionist models (Jansen & van der Maas, 1997; Quinlan, et al., 2007). 
However, the conclusion that connectionist models are unable to learn a true torque rule is 
premature.  The definition of torque as a product of number of weights and distance from the 
fulcrum is a rather simple multiplicative function, even if it has to be computed on both sides of 
the fulcrum and the larger torque selected as marking the descending side of the scale. An 
obvious, but untried way to see if networks can learn to compute and compare torques is to 
ensure that there are sufficient torque problems to the training set. Otherwise, the relatively few 
available torque problems could be easily swamped by the much larger number of problems that 
can correctly be solved by addition or even simpler rules involving weight or distance. This is 
particularly true when there are biases in the training set favoring equal-distance problems, 
thought to be necessary for capturing the stage-1 tendency to focus on weight information to the 
exclusion of distance information (McClelland, 1989; Shultz, et al., 1994).  
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Here we present simulations to test this hypothesis that prolonged training with sufficient 
numbers of torque problems would simulate learning to use torques. We apply several analyses 
of network responses to assess the use of torque and addition rules. We focus here on stages 3 
and 4 and on the addition and torque rules thought to characterize those two stages, respectively 
(Boom, Hoijtink, & Kunnen, 2001; Jansen & van der Maas, 1997, 2002). We use newer sibling-
descendant CC (SDCC) networks to study learning of a torque rule from prolonged exposure to 
torque problems.  

A.2	Method	
SDCC is an extension of the CC algorithm that allows a newly-recruited unit to be installed 
either on the current highest layer (as a sibling) or on its own higher layer (as a descendant) as in 
standard CC (Baluja & Fahlman, 1994). Sibling and descendant candidates compete with each 
other for recruitment. As in standard CC, the candidate whose activation correlates highest with 
network error during input phase is the one recruited. Because descendant candidates have extra, 
cascaded weights from the current highest layer of hidden units, they are typically penalized by 
having their correlations multiplied by .8. This tends to minimize network weights without 
harming generalization (Baluja & Fahlman, 1994). The basic idea of SDCC is to introduce more 
flexible network topologies and build whichever connectivity is most beneficial at the time of 
recruitment. Early simulations with SDCC have so far found that it creates smaller and more 
variable network topologies, but with the same functionality as standard CC (Shultz, 2006).  

Because we focus here only on rules 3 and 4, we train SDCC networks only on conflict 
problems. For each of 20 networks, we randomly selected without replacement 40 addition 
problems and 40 torque problems for the training set. From the remainder of unselected 
problems, we randomly selected 12 addition problems and all of the remaining 12 torque 
problems for testing. After training to some epoch limit or to victory, whichever came first, we 
recorded the proportions correct of training problems and addition and torque test problems. 
Input and output coding and parameter settings were identical to the original CC simulation of 
balance-scale development (Shultz, et al., 1994). For each network, the recruitment pool 
contained eight sibling and eight descendant sigmoid units.  

A.3	Results	
We did some pilot testing to determine the epoch at which performance on the three measures 
reached asymptote. To explore this, we set last-epoch limits of 100 to 1000, in steps of 100. 
Figure A1 shows proportion correct on train, test-addition, and test-torque problems across these 
different levels of training. There were 20 SDCC networks in each run. It is apparent that 
proportion correct on all three sets of patterns peaked at about 800 epochs in these networks. The 
plots of performance on test problems suggest early success (across the first 100 epochs) on 
addition problems but not on torque problems which continue to improve up to about 800 
epochs. The only region where the SD bars do not greatly overlap is at a 100-epoch limit. After 
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that, the different kinds of patterns (training, addition, and torque) do not differ significantly – 
the networks achieve a high level of success on all three.  

 

Figure A1. Mean proportion of patterns correct at various levels of training with SD bars.   

To focus more precisely on the difference between following addition and torque rules, we 
compared networks trained up to a 100-epoch limit against those trained up to an 800-epoch 
limit. Mean numbers of recruited hidden units per network were 0.20 at the 100-epoch limit and 
5.45 at the 800-epoch limit. Only 4 of the 20 networks run at the 100-epoch limit recruited any 
hidden units, and they each recruited a single hidden unit. These proportions were given an 
arcsine transformation in order to stabilize the variances (Hogg & Craig, 1995). These 
transformed values were subjected to a 2 x 3 mixed ANOVA in which epoch limit (100 vs. 800) 
served as a between-network factor and patterns (train, test-addition, and test-torque) served as a 
repeated-measures factor. There was a main effect of epoch limit, F(1, 38) = 289, p < .0001, a 
main effect of patterns, F(2, 76) = 144, p < .0001, and an interaction between them, F(2, 76) = 
80, p < .0001. A follow-up repeated measures ANOVA of only test-addition problems showed 
no main effect of epoch limit, F(1, 38) < 1, indicating that networks mastered the addition 
problems during the first 100 epochs. Other simulations indicated that ordinary CC networks 
performed in a similar manner to these SDCC networks.  

A.4	Discussion	
It seems as though an addition rule can be followed without any (or many) hidden units, but a 
torque rule is more difficult thus requiring considerably more hidden units and epochs of training 
to recruit and consolidate the units. The fact that networks get 92% and 84% of addition and 
torque test problems, respectively, correct by 800 epochs suggests that they are following rule 4 
by that point. In psychology experiments on the balance scale task, it has been conventional to 
considers 80% success on all problem types adequate for a diagnosis of rule 4 (Siegler, 1976).  
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These results show that constructive networks can learn to perform in conformity with an 
addition and a torque rule if given sufficient examples of each type of problem. Furthermore, 
these two rules emerge in the proper order, addition before torque. This order is natural for 
constructive networks that recruit hidden units only as needed to reduce error (Shultz, 2003). 
Indeed, such recruitments provide a computational explanation of this ordering in the sense that 
nonlinear hidden units underlie multiplication. The results also underscore that ANOVA applied 
to properly designed experiments can provide a valid diagnostic technique for rule-like 
performance. 
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Appendix	B:	Detecting	Addition	and	Torque	Rules	with	LCA	and	RAM	in	
SDCC	Networks	

B.1	Introduction	
In this appendix, we apply two different diagnostic techniques to SDCC networks to test their 
ability to transition to a genuine torque rule. 

B.1.1	The	RAM	technique	
The classic method of detecting rules on balance scale tasks is to test a participant with several 
problems of each of six types (Siegler, 1976). Three of these types are relatively simple problems 
with no conflict between weight and distance information: balance problems in which there are 
equal numbers of weights on each side of the scale placed equally distant from the fulcrum, 
weight problems in which one side has more weights than the other with the weights place 
equally distant from the fulcrum, and distance problems with the same number of weights on 
each side placed at different distances from the fulcrum. There are also three kinds of conflict 
problems in which one side of the scale has more weights and the other side has greater distance, 
making the prediction of which side will descend more difficult. Conflict-weight problems have 
greater torque on the side with more weight, conflict-distance problems have greater torque on 
the side with more distance, and conflict-balance problems have equal torques on each side of 
the fulcrum.  

The classic Rule-assessment Method (RAM) examines the pattern of performance across 
these six problem types (Siegler & Chen, 2002). Use of rule 1 (weight information) is indicated 
by a pattern of correct performance on the balance, weight, and conflict-weight problems and 
incorrect performance on the distance, conflict-distance, and conflict-balance problems. Rule 2 
(weight information, but use of distance when the weights are equal across the two sides) is 
characterized by the same pattern as rule 1, but with additionally correct performance on distance 
problems. In rule 3, weight and distance information are both used, yielding correct performance 
on the simple problems, but confusion on conflict problems.  

Although Siegler (1976) suggested that rule 3 users guess on conflict problems, several later 
researchers have emphasized the use of other rules, particularly the addition rule, in which the 
side with the larger sum of weight and distance is predicted to descend (Boom, Hoijtink, & 
Kunnen, 2001; Ferretti, Butterfield, Cahn, & Kerkman, 1985; Jansen & van der Maas, 1997, 
2002; Normandeau, Larivee, Roulin, & Longeot, 1989; Quinlan, van der Maas, Jansen, Booij, & 
Rendell, 2007). Rule 4 is characterized by successful performance on all six problem types, 
perhaps indicating use of the torque rule in which the side with the larger torque (weight x 
distance) is predicted to go down. To accommodate error variance in human performance, RAM 
users tolerate up to 20% deviant responses from these precise patterns of performance. Because 
these four rules tend to develop in order of their numerical designation, they are often taken as 
evidence that a child is in a particular stage of development.  
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B.1.2	The	LCA	technique	
More recently, several researchers have argued that Latent Class Analysis (LCA) is a 
methodologically sounder way to detect rules (Boom, et al., 2001; Jansen & van der Maas, 1997, 
2002; Quinlan, et al., 2007). In exploratory LCA, estimated parameters of a statistically-fitting 
model differ across latent classes, typically designating homogeneous groups of participants that 
differ from each other (McCutcheon, 1987). Individuals can be sorted into the latent classes 
based on membership probabilities estimated from the model.  

In balance-scale research, the test problems typically come from the same types used by 
RAM researchers. But because LCA requires large numbers of participants and does better with 
small numbers of problems, non-diagnostic problems such as balance and weight problems are 
often omitted from the test set. Also, in this recent research, there is often a systematic attempt to 
distinguish the addition rule from the torque rule by including among the conflict test problems 
some that can solved by either addition or torque and others that can only be solved by torque.  

B.1.3	The	LCA	vs.	RAM	debate	
Advantages and disadvantages of these two methods for detecting balance-scale rules have been 
noted. RAM is favored for its transparency and ease of use with relatively small numbers of 
participants, convergence with other measures such as verbalization by the participants, stability 
over repeated measurements, prediction of which problems will best promote learning, and 
consistency across a wide variety of problems including conservation, fullness, shadow 
projection, and concepts of velocity, time, and distance (Siegler & Chen, 2002).  

RAM has been criticized for using arbitrary scoring criteria (e.g., 20% tolerance), lack of 
statistical rigor, and inability to assess rules beyond those emphasized by the theoretical analysis 
of integrating two dimensions of information (Jansen & van der Maas, 2002). The criticized 
standard theoretical analysis involves a characterization of rule-based stages (Siegler, 1976). 
Children are assumed to start with one dimension, begin to include the other dimension when the 
first one fails to differentiate cases, eventually use both dimensions but become confused when 
these cues conflict, and finally integrate the two dimensions correctly. Although it is not clear 
how the addition rule could be derived from this stage analysis, it has been noted as a strategy by 
researchers using RAM (Ferretti, et al., 1985; Normandeau, et al., 1989).  

LCA is favored for providing a statistical fit between a model and psychological data, 
avoiding arbitrary scoring criteria, allowing falsification of hypothesized rules, and discovery of 
new rules (Jansen & van der Maas, 1997, 2002). A counter argument is that only the issue of 
statistical fit uniquely favors LCA because RAM also allows for rule falsification and discovery, 
and choice of a significance level in LCA is no less arbitrary than a tolerance level in RAM 
(Siegler & Chen, 2002). LCA was further criticized for not providing stable assessments of rule 
use over short time periods and for requiring several orders of magnitude more subjects than 
RAM (Siegler & Chen, 2002). It is difficult to find an LCA study of the balance scale with fewer 
than about 500 participants.  
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These two diagnostic techniques each have their advantages and disadvantages and it is 
difficult to decide between them merely by applying them to (usually) different datasets, whether 
psychological data or computer simulations of psychological data. Here we apply both 
techniques to the same dataset, produced by a large number of SDCC networks.  

B.2	Method	
To approximate the number of cases used in recent LCA studies of human balance-scale 
development (Boom, et al., 2001), we trained 250 SDCC networks on randomly selected 
addition and torque problems for up to 100 epochs and 250 more SDCC networks for up to 800 
epochs, as in the simulations of Appendix A. We replicated this five different times, for a total of 
2500 networks. In each replication, we diagnosed rule following by both LCA and RAM 
methods. Our test patterns were four problems taken from a larger set of 15 problems used in 
recent LCA balance-scale studies of humans (Boom, et al., 2001), chosen because they 
distinguish addition from torque rules and possess a uniform absolute torque difference. It is now 
well known that problems with large absolute torque differences are easier for people and 
networks to solve at every stage (Ferretti & Butterfield, 1986; Ferretti, et al., 1985; Shultz, 
Mareschal, & Schmidt, 1994).  

B.3	Results	
For each of the five replications, the frequencies of the various response vectors were subjected 
to exploratory LCA using the LEM program (Vermunt, 1997), using default settings throughout. 
Model fit was evaluated with the Cressie-Read statistic which is essentially a generalization of 
the various chi-squared statistics (Cressie & Read, 1984). Following LCA conventions, we start 
with a 1-class model and increment classes by 1 until we obtain a non-significant Cressie-Read 
value (indicating that the model fits the data) or run out of degrees of freedom, whichever comes 
first. Because the sum of conditional probabilities across wrong and correct answers for each 
problem always sum to 1, we can summarize these parameters in a plot of estimated probabilities 
of correct responses (Figure B1). The plots for torque and addition rules follow their expected 
patterns – mostly correct on all four problems for the torque class and correct only on the 
addition problems for the addition class. The unknown class shows correct performance on one 
addition and one torque problem, middling performance on the other torque problem and poor 
performance on the other addition problem. This difficult-to-explain pattern did not replicate 
well.  
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Figure B1. Conditional probabilities of SDCC networks being correct in replication 1.  

To provide an indication of variability across replications, Figure B2 presents a similar plot 
for replication 2. All replications showed the expected patterns for torque and addition classes, 
but a highly variable pattern for the rare class we labeled as unknown. In replication 2, this class 
was characterized by middling performance on all four problems but slightly better performance 
on the addition problems than on the torque problems, and again did not replicate well.  

 

Figure B2. Conditional probabilities of SDCC networks being correct in replication 2.  

Strict application of RAM to these data involved noting the frequencies of networks falling in 
the quintessential addition and torque patterns. These two cells always held the highest 
frequencies, containing 59% of the lightly-trained networks and 72% of the highly-trained 
networks. Allowing some Sieglerian latitude by also counting the frequencies of networks with 
only one of the two addition problems correct, these percentages rose to 82% and 94%, 
respectively.  
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B.4	Discussion	
Confirming the results of the ANOVA technique for rule diagnosis in Appendix A, both LCA 
and RAM revealed an early addition rule and a later torque rule in SDCC networks trained on 
both addition and torque conflict problems. This further demonstrates that SDCC networks can 
learn a genuine torque rule from sufficiently informative examples and learn it later than a 
simpler addition rule, thus showing a natural progression from stage 3 to 4 on the balance scale. 
There was a strong tendency for LCA to also find a small third latent class that could not be 
reliably identified as representing any particular rule. The problem of high variability in LCA 
solutions is studied in greater detail with simulated data in Appendix C, where it is also shown 
that LCA cannot determine the correct number of classes.  
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Appendix	C:	LCA	Yields	Small	and	Unreliable	Classes	

C.1	Introduction	

A debate has recently emerged regarding the application of Latent Class Analysis (LCA) to the 
diagnosis of rule-based stages in developmental psychology. Supporters favor LCA for providing 
a statistical fit between a model and psychological data, avoiding arbitrary scoring criteria, 
allowing falsification of hypothesized rules, and discovery of new rules (Jansen & van der Maas, 
1997, 2002). Detractors counter that other techniques such as the Rule-assessment Method 
(RAM) also allow for rule falsification and rule discovery, and that choice of a significance level 
in LCA is no less arbitrary than a tolerance level in RAM (Siegler & Chen, 2002).  

LCA was recently applied (Quinlan, van der Maas, Jansen, Booij, & Rendell, 2007) to a 
replication of an early computational model of children’s development on the balance-scale task 
(Shultz, Mareschal, & Schmidt, 1994). Quinlan and colleagues (2007) criticized this 
computational model, which had used constructive neural networks, for not capturing these 
stages. In an invited response to the Quinlan et al. paper, we joined this debate, arguing among 
other points that LCA, as presently used, shows a strong tendency to identify small and 
unreliable classes (where each class represents a rule), and is thus suspect as method of 
validating stages in both psychological and modeling studies (Shultz & Takane, 2007). In their 
response to our rejoinder, our argument was dismissed because our demonstration used a 3-class 
model of 4 items, which yields an unidentified statistical model that does not converge during 
estimation (van der Maas, Quinlan, & Jansen, 2007). Here we present a 3-class model of 6 items, 
which yields an identified statistical model, to study the reliability problem in more detail, 
confirming that this problem is indeed severe enough to warrant extreme caution in using LCA 
to assess rule development. First, we present a brief recap of relevant background literature and 
issues. 

C.1.1	LCA	unreliability	in	psychological	studies	

The psychological literature on using LCA to assess balance-scale stages provides strong hints of 
unreliability in rule identification. Independent LCA studies of human balance-scale 
performance produce a number of small, leftover classes with mutually inconsistent 
interpretations. Boom and colleagues (Boom, Hoijtink, & Kunnen, 2001) found classes 
suggestive of Siegler’s four rules, the addition rule, and several infrequent and uninterpretable 
classes. Jansen and van der Maas (1997) found classes for Siegler’s first 2 rules, the addition 
rule, and a no-balance rule predicting that the scale would not balance, which was described as 
difficult to interpret. Jansen and van der Maas (2002) reported classes consistent with Siegler’s 
four rules, addition, a smallest-distance-down rule, a distance-and-guessing-when-weights-are-
unequal rule, a rule that seemed to combine Siegler’s rule 3 with the addition rule, and additional 
difficult-to-interpret classes. Tellingly, it is the smaller classes that tend to be the most difficult 
to replicate across these human studies.  
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The problem with these small extra classes is not difficulty of interpretation. Humans often 
exhibit behavior that is difficult to interpret in terms of rules. The real problem with extra LCA 
classes is that they are small and inconsistent, suggesting that they might be random and 
meaningless.  

Interesting in this context is Boom et al.’s (2001) distinction between classes and strategies. 
Classes are said to refer to a set of response patterns that are statistically similar, as revealed by 
say LCA. Strategies (or rules) refer to an interpreted procedure that could conceivably generate a 
statistical class. Classes that cannot be interpreted as being produced by sensible rules should not 
be treated as rules; they are merely statistical groupings that do not happen to fit a rule 
interpretation.  

In summary, the only balance-scale rules to be reliably diagnosed by LCA in humans are 
Siegler’s rules 1, 2, 4, and addition. Ignoring the small and difficult-to-interpret latent classes in 
Quinlan et al.’s (2007) study (Shultz & Takane, 2007), it is noteworthy that their LCA found 
evidence for Siegler’s rules 1 and 2 and the addition rule in their replication of our original 
balance-scale simulation (Shultz et al., 1994). Apart from rule 4, these are precisely the same 
rules consistently found with children using LCA. Our accompanying manuscript and 
Appendices A and B provide clear evidence of neural networks also following a genuine torque 
rule (rule 4).  

C.2	Method	

To investigate the unreliability issue in LCA more deeply, we generated synthetic data from 
ideal addition and torque rules for six hypothetical conflict problems, three of which could be 
solved by either addition or torque comparisons and three of which could only be solved by 
comparison of torques. This transition from addition to torque rules is documented in our main 
paper and in Appendices A and B.  

The simulation used class population sizes of .48 for a torque rule, .48 for an addition rule, 
and .04 for a small random class. There were 5000 replications of 500 cases each. There were six 
hypothetical balance-scale items, the first three of which could be solved by either an addition or 
a torque rule, and the remaining three of which could only be solved by a torque rule. For each of 
the ten replications, the frequencies of response patterns were subjected to exploratory LCA with 
the LEM program (Vermunt, 1997), using default parameter settings throughout.  

C.3	Results	

The mean conditional probabilities of being correct are plotted in Figure C1 for each item and 
latent class. As expected, the torque class was characterized by virtually perfect performance on 
each item, the addition class by virtually perfect performance on the first three items and failure 
on the last three items, and the random class by near chance performance.  
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Figure C1. Mean conditional probabilities of being correct for three latent classes on six 
hypothetical items, the first three of which can be solved by either a torque rule or an addition 
rule and the last three of which can only be solved by a torque rule. Population class sizes are 
listed in the legend as proportions after the class name.  

 

The 95% confidence bands for conditional probability estimates in the addition and random 
classes are plotted in Figure C2. They reveal far more variability in the random class than in the 
addition class. The torque class is excluded for clarity, but the confidence bands are as tight for 
that class as for the addition class, ranging between .9924 and 1.0.  

 

Figure C2. 95% confidence bands for the addition and random classes.  
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The standard deviations of these conditional probabilities are plotted in Figure C3, again for 
each item and class. The standard deviations for the small, random class are about 65 times 
greater than those for the large, systematic classes based on the torque and addition rules.  

 

Figure C3. Standard deviations of the conditional probabilities in Figure C1. 

 
These results approximately conform to the simplest binomial case. In the binomial 

distribution, the variance of the frequency x is np(1 - p), where n is sample size and p is x/n. 
From this, we can derive that ݁ܿ݊ܽ݅ݎܽݒሺ݌ሻ ൌ ሻݔሺ݁ܿ݊ܽ݅ݎܽݒ ݊ଶ ൌ ሺ1݌ െ ሻ݌ ݊.⁄ 	⁄ If p is .5 (as in 
the random case) and n = 500 x .04 = 20, the SD of p is sqrt(.25 / 20) = 0.112. When p = 0 or 1 
(as in the torque and addition cases), the SD is theoretically 0.  

In further simulations, we found that roughly four times as many cases (N = 2000) were 
necessary to achieve the standard deviations that van der Maas et al. (2007) deemed to be 
acceptably low. Without any particular justification, they cited 0.035 as an acceptable overall 
mean standard deviation for conditional probabilities. We found a mean overall standard 
deviation of 0.022 for conditional probabilities with 2000 cases. The mean standard deviations 
for the small, random class was 70 times higher than the mean standard deviations for the two 
larger, systematic classes. Although 2000 participants may be feasible for computer simulations, 
it is unlikely that psychology researchers would run so many human participants in cognitive 
experiments, unless perhaps when running online experiments.  

The relatively large variability for the small, random class is sufficient to produce many 
different patterns of performance across the six items, as shown in Figure C4, which plots 
conditional probabilities for the first five replications in an identical simulation, again with a 
more realistic 500 observations. In each replication, the pattern for the torque and addition 
classes is predictably regular – perfect performance for the torque class, and for the addition 
class perfect performance on the first three items and perfect failure on the last three items. 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 2 3 4 5 6

Item

S
D

 o
f 

co
nd

iti
on

al
 p

ro
ba

bi
lit

y

Torque .48

Addition .48

Random .04

Population class size



38 
 

However, the pattern for the small, random class (solid line) is highly variable, affording many 
different interpretations across the replications.  

 

 Replication 1 

 
Replication 2 Replication 3 

  
Replication 4 Replication 5 

  

Figure C4. Estimated conditional probability of being correct for three distinct latent classes in 
five different replications.  

 

The small, random class in replication 1 could be interpreted as success on item 2, failure on 
items 1 and 3, and guessing on items 4-6. The same class in replication 2 looks like success on 
items 4-6 and failure on items 1-3. Replication 3 features an alternating pattern with somewhat 
better performance on odd than even items, while replication 5 shows the reverse alternating 
pattern with better performance on evens than odds. In replication 4, there is a peak performance 
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at item 4. However, there is plenty of ambiguity in these interpretations. Such variability would 
be expected given the large standard deviations in conditional probabilities for the small, 
randomly-produced class. 

C.3.1	Is	Variability	Caused	by	Smallness	or	Randomness?	

An important question raised by these results is whether the variability of small, random latent 
classes is caused by the smallness of the class size or the random production of class members, 
or perhaps by both smallness and randomness. We studied this issue by switching the population 
size of the small, random class with that of one of the large systematic classes, the addition class. 
Thus, the torque and random classes each had a population size of .48, and the addition class had 
a population size of .04. Again, there were 5000 replications of 500 cases each. 

The plot of mean conditional probability estimates over all 5000 replications in Figure C5 
conforms to the expected pattern: for the torque class near perfect performance on all six items, 
for the addition class success only on the first three items and failure on the last three items, and 
for the random class random performance averaging to about .5.  

 

Figure C5. Mean conditional probabilities of being correct for three latent classes on six 
hypothetical items, the first three of which can be solved by either a torque rule or an addition 
rule and the last three of which can only be solved by a torque rule. Population class sizes are 
listed in the legend as proportions after the class name.  

  

However, the plot of SDs of these same conditional probabilities in Figure C6 shows that 
variability is about 6.4 times greater in the large random condition than in the torque condition, 
and about 12.3 times greater in the small addition condition than in the torque condition.  
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Figure C6. Standard deviations of the conditional probabilities in Figure 5. 

C.3.2	Comparing	across	simulations	

These results are summarized across the two foregoing simulations in Figure C7, which plots the 
mean SDs of conditional probabilities across items from Figures C3 (solid line) and C6 (dashed 
line). Examination of Figure C7 indicates that both smallness and randomness contribute to the 
variability of conditional probabilities. Within the constraints of the present parameter settings, 
smallness has a larger impact than does randomness in that the small but systematic condition is 
more variable than the large but random condition. The results suggest that even systematic 
classes will be difficult to replicate when they are small, and that random classes will be difficult 
to replicate even when they are large. If a class is both small and random, it will be especially 
unreliable.  
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Figure C7. Mean SDs of conditional probabilities across items from Figures C3 and C6. Labels 
near the points describe the nature of the class in terms of its population size and randomness.  

C.4	Discussion	

Our present results, with an identified LCA model, confirm our previous conclusion with an 
unidentified model (Shultz & Takane, 2007) that LCA has serious problems in identifying small 
and unreliable rule classes. The dismissal of our previous demonstration for not having an 
identified model (van der Maas et al., 2007) proved to be a red herring. A deeper analysis here 
more precisely pinpointed and quantified the extent of this problem, finding that the standard 
deviations of conditional probabilities were 65-70 times greater for the small, random classes 
than for the large systematic classes. With such extraordinary variation, it is not surprising to 
also find that the pattern of these small, random classes do not replicate across different LCA 
replications. Of course, when the pattern across test items does not replicate, neither will its 
interpretation. Further investigation indicated that both class smallness and randomness 
contribute to increasing this variance, with smallness being more important under the current 
parameter settings.  

Our critics argue that increased variation in small classes with larger samples is not a 
problem because the larger classes are unaffected by the additional smaller classes (van der Maas 
et al., 2007). We would agree that attention should be redirected from the unreliable, small 
classes to the reliable large classes, but it remains that our model was criticized for not covering 
the small, unreliable classes of often non-sensible rules (Quinlan et al., 2007).  

Some of these problems with LCA can be traced to the LCA method and the frequency data 
used as input. The common method for parameter estimation in LCA is Maximum Likelihood 
Estimation (MLE), partly because MLE provides several statistical advantages. However, these 
advantages are present only when of the following conditions are all satisfied: 1) the fitted model 
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is correct, 2) the sample size is sufficiently large, and 3) other regularity conditions are met. We 
discuss each of these conditions and then an epistemological problem.   

An LCA model consists of two parts, one statistical and the other parametric. The statistical 
part assumes independent trials and a multinomial probability distribution of multiple possible 
response patterns, only one of which occurs in each trial. The parametric part assumes several 
homogeneous groups in a heterogeneous population, with each group member responding to a 
set of items independently of other items (the Local Independence assumption – LI). Each group 
(represented as a latent class) is characterized by its size and a set of conditional probabilities of 
responses to particular items. To satisfy the LI assumption, a large number of latent classes 
typically must be assumed, but this tends to produce latent classes that are difficult to interpret 
(Bartholomew, 1987; Hagenaars, 1990; Qu, Tan, & Kutner, 1996).  

The benefits of MLE emerge only with a sufficiently large sample. However, what 
constitutes a large sample is controversial (Hagenaars, 1990; Wickens, 1989). There are 2n 
possible response patterns when there are n dichotomous items, and reliably estimating the 
probabilities of these response patterns requires a large number of participants. There should be 
at least one, but preferably five or more cases in each response pattern. This condition can be 
difficult to satisfy, particularly when some response patterns rarely occur, which happens as the 
number of response patterns increases. Although this problem is under active consideration 
(Bartholomew & Leung, 2002; Hoijtink, 1998; Reiser & Lin, 1999), there is currently no 
commonly-accepted solution.  

One of the regularity conditions for the standard asymptotic properties of MLE is that LCA 
parameters must reside in the interior of the parameter space. However, it is often the case that 
important parameter values (like those representing crisp rules) are actually on the boundaries of 
the parameter space with conditional probabilities of 0 or 1, as exemplified throughout LCA 
analyses of balance-scale results. Although there are some attempts to extend asymptotic theory 
to cover cases in which estimates are subject to inequality constraints (Dijkstra, 1992; Shapiro, 
1985, 1988), this complicates the theory enough to prevent integration of these efforts into LCA 
literature and software. The only known practical solutions are resampling methods, such as the 
parametric bootstrap (Aitkin, Anderson, & Hinde, 1981; Langeheine, Pannekoek, & van de Pol, 
1996).   

Moreover, even when all three conditions are met, there is an unresolved epistemological 
issue: there is no statistical method to determine the correct number of latent classes. Although 
one might argue that goodness-of-fit tests can determine the number of significant latent classes, 
such tests are not designed for this – they are instead designed to determine how many latent 
classes are needed to satisfy the LI assumption. The number of latent classes naturally increases 
with sample size because with a large sample even a small departure of the model from the data 
becomes significant, and in order to get a satisfactory fit, the number of latent classes has to be 
increased. With number of latent classes directly dependent on sample size, there is no correct 
number of latent classes in LCA. The number of latent classes to extract can also depend on the 
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purpose of the analysis. There are typically some researchers wanting most of the variability in 
the data to be explained by a model and some who are satisfied with less. The former will retain 
all the latent classes, while the latter retain only the most frequent classes.  

These are the same reasons that a statistical approach to factor analysis, a related technique 
for finding latent structure, has never found the correct number of common factors defining 
human intelligence and other characteristics. With a large sample size, even small correlations 
become significantly different from zero, and a large number of factors are required to explain 
the correlations. Researchers seeking a simpler, more unified picture of intelligence can use 
smaller samples, whereas those convinced of the complexity of intelligence can support their 
position with larger samples. Unless and until such statistical problems are resolved, our 
recommendation is to confine interpretation of latent classes to those that are replicated across 
studies. In particular, computational modelers should not bother chasing all of the latent classes 
found in LCA of children’s responses, as some researchers have mandated (Quinlan et al., 2007).  
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